The Cyclic Method
Consider the following equations:
Ax + By = C
Dx + Ey = F
To determine x :
Numerator = BF - CE
Denominator = BD - AE
x = ( BF - CE)/ ( BD-AE )
To determine y :
Numerator = CD - AF
Denominator = BD - AE
y = ( CD - AF)/ ( BD - AE )
Let us consider some examples :
1) x - y = 7
5x - 2y = 42
Using the above formulae we get,
x = ( -1* 42 - 7 * 2) / ( -1* 5 - 2 *1 ) = (-56)/ (-7) = 8
y = ( 7 * 5 - 42 * 1 ) / ( -1 * 5 - 2 * 1) = (-7) / (-7) = 1
Therefore x = 8 and y = 1
2) 5x - 3y = 11
6x - 5y = 9
Using the above formulae we get,
x = ( -3 * 9 - (-5)* 11 ) / ( -3 * 6 - 5 * (-5)) = 28/7 = 4
y = ( 11 * 6 - 5 * 9 ) / ( -3 * 6 - 5 * (-5)) = 21/7 = 3
Therefore x = 4 and y = 3
Back to Simple Simultaneous Equations